Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Alan J. Lough, ${ }^{\text {a* }}$ Karine Villeneuve ${ }^{\text {b }}$ and William Tam ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, University of Toronto, Toronto Ontario, Canada M5S 3H6, and ${ }^{\mathbf{b}}$ Department of Chemistry, University of Guelph, Guelph Ontario, Canada N1G 2W1

Correspondence e-mail:
alough@chem.utoronto.ca

Key indicators

Single-crystal X-ray study
$T=150 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.043$
$w R$ factor $=0.119$
Data-to-parameter ratio $=16.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

5,6-[2 α-Acetyl-1 β-(ethoxycarbonyl)ethylidene]-1,3,3a,4,5,6,7,7a-octahydro-4,7-epoxy-isobenzofuran-1,3-dione

The regio- and relative stereochemistry of the title compound, $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{7}$, has been established by X-ray analysis. The molecular dimensions are normal. Molecules form centrosymmetric hydrogen-bonded dimers through two independent weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Recently, we studied the ruthenium-catalyzed [2+2]-cycloadditions between bicyclic alkenes and propargyl alcohols (Villeneuve et al., 2003). When the bicylic alkene (I) (see scheme) was used as the bicyclic alkene component and propargylic alcohol (II) was used as the alkyne component, the product obtained was not the expected [2+2] cyclobutene cycloadduct. An unknown product was formed instead and its structure was not determined by NMR experiments. The structure of the title compound, (III), was established by the present single-crystal X-ray diffraction analysis.

A view of (III) is shown in Fig. 1. Molecules form centrosymmetric hydrogen-bonded dimers through two independent weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (see Fig. 2). The graph-set descriptor (Bernstein et al., 1995) for the $\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O} 5^{\mathrm{i}}$ [symmetry code: (i) $1-x, 1-y, 1-z$] interaction gives $R_{2}^{2}(12)$ rings and the $\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{i}}$ interaction gives $R_{2}^{2}(16)$

Figure 1
View of the molecule of (III), showing the crystallographic labeling scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are represented by small spheres.

Received 12 August 2004
Accepted 17 August 2004
Online 31 August 2004
rings. Two other rings are formed $\left[R_{2}^{2}(10)\right.$ and $\left.R_{2}^{2}(14)\right]$ using combinations of both interactions; see Table 1 for the hydrogen-bonding geometries.

Experimental

Addition of exo-3,6-epoxy-1,2,3,6-tetrahydrophthalic anhydride ($142.3 \mathrm{mg}, 0.8566 \mathrm{mmol}$), (I), and ethyl 4-hydroxy-2-pentynoate ($60.7 \mathrm{mg}, 0.427 \mathrm{mmol}$), (II), to $\mathrm{Cp} * \mathrm{RuCl}(\mathrm{COD})(4.6 \mathrm{mg}, 0.012 \mathrm{mmol})$ in THF (1 ml) at 333 K followed by column chromatography with pentane/diethyl ether provided the product (III). Suitable crystals were grown from 40% pentane/diethyl ether.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{7} \\
& M_{r}=308.28 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=11.2150(6) \AA \\
& b=12.2282(3) \AA \\
& c=11.5439(5) \AA \\
& \beta=115.7530(19)^{\circ} \AA^{\circ} \\
& V=1425.88(10) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
\begin{aligned}
& D_{x}=1.436 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 5791 \\
& \quad \text { reflections } \\
& \theta=2.6-27.5^{\circ} \\
& \mu=0.12 \mathrm{~mm}^{-1} \\
& T=150(1) \mathrm{K} \\
& \text { Slab, colourless } \\
& 0.44 \times 0.20 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer φ scans and ω scans with κ offsets Absorption correction: none 11434 measured reflections 3262 independent reflections 2381 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.119$
$S=1.01$
3262 reflections
202 parameters
H -atom parameters constrained
$R_{\text {int }}=0.048$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-14 \rightarrow 13$
$k=-15 \rightarrow 15$
$l=-14 \rightarrow 15$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0613 P)^{2}\right. \\
& +0.3395 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\text {max }}=0.24 \mathrm{e}_{\mathrm{C}} \mathrm{\AA}^{-3} \\
& \Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.010 \text { (2) }
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.51	$3.3547(19)$	145
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.29	$3.1659(19)$	148

Symmetry code: (i) $1-x, 1-y, 1-z$.

View of the hydrogen-bonded dimer of (III), showing weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions as dashed lines. O atoms are shown in red and H atoms are green. Only the H atoms involved in the hydrogen bonds are shown. Displacement ellipsoids are drawn at the 30% probability level. The suffix * in atom labels corresponds to symmetry code (i) in Table 1.

All H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}$ distances ranging from 0.96 to $0.98 \AA$ and included in the refinement in a riding-model approximation with $U_{\text {iso }}=1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for methyl) of the carrier atom.

Data collection: COLLECT (Nonius, 1997-2002); cell refinement: DENZO-SMN (Otwinowski \& Minor, 1997); data reduction: DENZO-SMN; program(s) used to solve structure: SHELXTL (Sheldrick, 2001); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2004).

The authors acknowledge NSERC Canada and the University of Toronto for funding.

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Nonius (1997-2002). COLLECT. Nonius BV, Delft, The Netherlands.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307-326. New York: Academic Press.

Sheldrick, G. M. (2001). SHELXTL/PC. Version 6.12 for Windows XP. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2004). PLATON. University of Utrecht, The Netherlands.
Villeneuve, K., Jordan, R. W. \& Tam, W. (2003). Synlett, 14, 2123-2128.

